LEARNING
gson

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started With gSON.......... ... 2
REMIAIKS . . 2
o= 10] 0] 2 2
INSTAIIALION. . . .o 2
Serialization and deserialiZation.o 3

N >TSS 3
SIMPlE EXAMIPIE. . .. 4
Convert String to JsonObject without POJO e 4
UsiNng GSON WIth INNEIHIANCE.o e e e e e e et 5
Chapter 2: Using Gson with JAX-RS (RESTfulweb services)........................ooi . 8
o= 10] 0] 2 8
JAX-RS Provider 10 USE GSOM.ttt e ettt et e e e e e e e 8

(04 (=T [(= 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: gson

It is an unofficial and free gson ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official gson.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/gson
http://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with gson

Remarks

Gson is an Open Source Java library that can be used to convert Java Objects into their JSON
representation. It can also be used to convert a JSON string to an equivalent Java object.

Goals for Gson

» Provide easy to use mechanisms like toString() and constructor (factory method) to convert
Java to JSON and vice-versa

» Allow pre-existing unmodifiable objects to be converted to and from JSON
» Allow custom representations for objects
e Support arbitrarily complex objects
» Generate compact and readable JSON output
Source code of Gson is available on Github.

User guide

Examples

Installation

In order to use Gson you have to include it in your project. You can do this by adding the following
dependency of the Gson version available in Maven Central:

Maven

Add to pom.xml

<dependencies>
<dependency>
<groupId>com.google.code.gson</groupld>
<artifactId>gson</artifactId>
<version>2.8.0</version>
<scope>compile</scope>
</dependency>
</dependencies>

Gradle:

Add to build.gradle

https://riptutorial.com/

http://github.com/google/gson
http://github.com/google/gson/blob/master/UserGuide.md

compile 'com.google.code.gson:gson:2.8.0"'

Serialization and deserialization

Gson gson = new Gson(); //Create a Gson object

MyType target = new MyType(); //This is the object you want to convert to JSON
String json = gson.todson (target); // serializes target to Json

MyType target2 = gson.fromJson(json, MyType.class); // deserializes json into target2

Arrays

JSON:

"id": 8484,

"name": "David",
"height": 173.2,
"weight": 75.42

"id": 8485,
"name": "Ronald",
"height": 183.73,
"weight": 83.1

Person.java

public class Person {
public int id;
public String name;
public double height;
public double weight;

@Override
public String toString() {
return "[id: " + String.valueOf (id) + ", name: " + name + ", height: " +
String.valueOf (height) + ", weight: " + String.valueOf (weight) + "]";
}
}
Usage:

Gson gson = new Gson () ;
Person[] persons = gson.fromJson(json, Person|[].class);
for (Person person : persons)

System.out.println (person.toString());

Output:

[id: 8484, name: David, height: 173.2, weight: 75.42]

https://riptutorial.com/

[id: 8485, name: Ronald, height: 183.73, weight: 83.1]

Simple Example

The Gson library provides cson.c1ass which handles all conversion between Java and JSON
objects. An instance of this class can be created by invoking default constructor. You usually
would like to have one Gson instance for the most part of operations in your program.

Gson gson = new Gson () ;

First, we need to create class of our object with which we will be working with

class Person {
public String name;
public int age;

public Person (String name, int age) {
this.name = name;
this.age = age;

Gson class provides methods tosson and fromsson Which are the main entry points for JSON and
java objects

Let's try to convert java object to JSON and back to java object

Person person = new Person ("Jason", 29);
//using gson object which we created earlier
String json = gson.todson (person);
System.out.println (json);

//Outputs: {"name": "Jason", "age": 29}

And now back again

String Jjson = "{\"name\": \"Jason\", \"age\": 29}1";
Person person = gson.fromJson (json, Person.class);
System.out.println (person.age + "yo " + person.name + " walks into a bar");

//Outputs "29 yo Jason walks into a bar"

Convert String to JsonObject without POJO

String jsonStr = "{\"name\" : \"Abcd\", \"greeting\": \"Hello\", }"; //Sample Json String

Gson gson = new Gson(); // Creates new instance of Gson

JsonElement element = gson.fromJson (jsonStr, JsonElement.class); //Converts the json string
to JsonElement without POJO

JsonObject JjsonObj = element.getAsdsonObject (); //Converting JsonElement to JsonObject

String name = JjsonObj.get ("name") .getAsString(); //To fetch the values from json object
String greeting = jsonObj.get ("greeting") .getAsString();

https://riptutorial.com/

Using GSON with inheritance

GSON does not support inheritance our of the box. Let's say we have the following class
hierarchy:

public class BaseClass {
int aj;

public int getInt () {
return a;

public class DerivedClassl extends BaseClass {
int b;

@Override
public int getInt () {
return b;

public class DerivedClass2 extends BaseClass {
int c;

@Override

public int getInt () {
return c;

And now we want to serialize an instance of perivedciassi to a json string

DerivedClassl derivedClassl = new DerivedClassl ();
derivedClassl.b = 5;
derivedClassl.a = 10;

Gson gson = new Gson{();
String derivedClasslJson = gson.todson (derivedClassl);

Now, in another place, we receive this json string and want to deserialize it - but in compile time
we only know it is supposed to be an instance of saseciass:

BaseClass maybeDerivedClassl = gson.fromJson (derivedClasslJson, BaseClass.class);
System.out.println (maybeDerivedClassl.getInt ());

But GSON does not Know derivedciassigson Was originally an instance of perivedciassi, S0 this will
print out 10.

How to solve this?

You need to build your own ssonbeserializer, that handles such cases. The solution is not
perfectly clean, but | could not come up with a better one.

https://riptutorial.com/ 5

First, add the following field to your base class

@SerializedName ("type")
private String typeName;

And initialize it in the base class constructor

public BaseClass () {
typeName = getClass () .getName () ;

Now add the following class:

public class JsonDeserializerWithInheritance<T> implements JsonDeserializer<T> {

@Override
public T deserialize(
JsonElement json, Type typeOfT, JsonDeserializationContext context)
throws JsonParseException {
JsonObject jsonObject = json.getAsJsonObject () ;
JsonPrimitive classNamePrimitive = (JsonPrimitive) jsonObject.get ("type");

String className = classNamePrimitive.getAsString();

Class<?> clazz;

try {

clazz = Class.forName (className) ;

} catch (ClassNotFoundException e) {

throw new JsonParseException (e.getMessage());
}

return context.deserialize(jsonObject, clazz);

All there is left to do is hook everything up -

GsonBuilder builder = new GsonBuilder ();

builder

.registerTypeAdapter (BaseClass.class, new JsonDeserializerWithInheritance<BaseClass>());
Gson gson = builder.create();

And now, running the following code-

DerivedClassl derivedClassl = new DerivedClassl () ;
derivedClassl.b = 5;

derivedClassl.a = 10;

String derivedClasslJson = gson.todson (derivedClassl);

BaseClass maybeDerivedClassl = gson.fromJson (derivedClasslJson, BaseClass.class);
System.out.println (maybeDerivedClassl.getInt ());

Will print out 5.

Read Getting started with gson online: https://riptutorial.com/gson/topic/4804/getting-started-with-

https://riptutorial.com/

http://riptutorial.com/gson/topic/4804/getting-started-with-gson

gson

https://riptutorial.com/

http://riptutorial.com/gson/topic/4804/getting-started-with-gson

Chapter 2: Using Gson with JAX-RS (RESTful
web services)

Examples

JAX-RS provider to use Gson

This is a custom JAX-RS errovider to use Gson as the JSON parser. The example also shows
how to use custom Java 8 date/time converters.

@Provider
@Produces (MediaType .APPLICATION_JSON)
@Consumes (MediaType .APPLICATION_JSON)
public class JerseyServerGson
implements MessageBodyWriter<Object>, MessageBodyReader<Object>

@Override

public boolean isReadable (Class<?> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType)

return true;

@Override

public Object readFrom(Class<Object> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType,
MultivaluedMap<String, String> httpHeaders,
InputStream entityStream)

throws IOException, WebApplicationException

try (InputStreamReader input =
new InputStreamReader (entityStream, "UTF-8")) {
Gson gson = getGson();
return gson.fromJson (input, genericType);

@NotNull
private Gson getGson () {
return new GsonBuilder ()
.registerTypeAdapter (LocalDateTime.class,
new AdapterLocalDateTime () .nullSafe())
.registerTypeAdapter (LocalDate.class,
new AdapterLocalDate () .nullSafe())
.setPrettyPrinting/()
.serializeNulls ()
.create();

@Override

https://riptutorial.com/

public boolean isWriteable (Class<?> type,
Type genericType,
Annotation[] annotations,

MediaType mediaType)

return true;

@Override

public long getSize (Object o,
Class<?> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType)

// Deprecated and ignored in Jersey 2

return -1;

@Override

public void writeTo (Object o,
Class<?> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType,
MultivaluedMap<String, Object> httpHeaders,
OutputStream entityStream)

throws IOException, WebApplicationException

try (OutputStreamWriter writer =
new OutputStreamWriter (entityStream, "UTEF-8")) {
getGson () .todson (o, genericType, writer);

Read Using Gson with JAX-RS (RESTful web services) online:
https://riptutorial.com/gson/topic/4893/using-gson-with-jax-rs--restful-web-services-

https://riptutorial.com/

http://riptutorial.com/gson/topic/4893/using-gson-with-jax-rs--restful-web-services-

Credits

Chapters

Getting started with
gson

Using Gson with
2 JAX-RS (RESTful
web services)

Contributors

Community, Daniil Dubrovsky, Derlin, Egor Neliuba, Ginandi,
James, Maverick, prOgramist, Uttam

Derlin, sargue

https://riptutorial.com/

10

http://riptutorial.com/contributor/-1/community
http://riptutorial.com/contributor/4354023/daniil-dubrovsky
http://riptutorial.com/contributor/2667536/derlin
http://riptutorial.com/contributor/1348215/egor-neliuba
http://riptutorial.com/contributor/551123/ginandi
http://riptutorial.com/contributor/359034/james
http://riptutorial.com/contributor/1235535/maverick
http://riptutorial.com/contributor/4698611/pr0gramist
http://riptutorial.com/contributor/1901094/uttam
http://riptutorial.com/contributor/2667536/derlin
http://riptutorial.com/contributor/518992/sargue

	About
	Chapter 1: Getting started with gson
	Remarks
	Examples
	Installation
	Serialization and deserialization
	Arrays
	Simple Example
	Convert String to JsonObject without POJO
	Using GSON with inheritance

	Chapter 2: Using Gson with JAX-RS (RESTful web services)
	Examples
	JAX-RS provider to use Gson

	Credits

